On construction of involutory MDS matrices from Vandermonde Matrices in GF(2 q )

نویسندگان

  • Mahdi Sajadieh
  • Mohammad Dakhilalian
  • Hamid Mala
  • Behnaz Omoomi
چکیده

Due to their remarkable application in many branches of applied mathematics such as combinatorics, coding theory, and cryptography, Vandermonde matrices have received a great amount of attention. Maximum distance separable (MDS) codes introduce MDS matrices which not only have applications in coding theory but also are of great importance in the design of block ciphers. Lacan and Fimes introduce a method for the construction of an MDS matrix from two Vandermonde matrices in the finite field. In this paper, we first suggest a method that makes an involutory MDS matrix from the Vandermonde matrices. Then we propose another method for the construction of 2 × 2 Hadamard MDS matrices in the finite field GF(2). In addition to introducing this method, we present a direct method for the inversion of a special class of 2 × 2 Vandermonde matrices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lightweight MDS Involution Matrices

In this article, we provide new methods to look for lightweight MDS matrices, and in particular involutory ones. By proving many new properties and equivalence classes for various MDS matrices constructions such as circulant, Hadamard, Cauchy and Hadamard-Cauchy, we exhibit new search algorithms that greatly reduce the search space and make lightweight MDS matrices of rather high dimension poss...

متن کامل

On Constructions of MDS Matrices From Circulant-Like Matrices For Lightweight Cryptography

Maximum distance separable (MDS) matrices have applications not only in coding theory but are also of great importance in the design of block ciphers and hash functions. It is highly nontrivial to find MDS matrices which could be used in lightweight cryptography. In a SAC 2004 paper, Junod et. al. constructed a new class of efficient MDS matrices whose submatrices were circulant matrices and th...

متن کامل

Lightweight MDS Generalized Circulant Matrices (Full Version)

In this article, we analyze the circulant structure of generalized circulant matrices to reduce the search space for finding lightweight MDS matrices. We first show that the implementation of circulant matrices can be serialized and can achieve similar area requirement and clock cycle performance as a serial-based implementation. By proving many new properties and equivalence classes for circul...

متن کامل

Lightweight MDS Generalized Circulant Matrices

In this article, we analyze the circulant structure of generalized circulant matrices to reduce the search space for finding lightweight MDS matrices. We first show that the implementation of circulant matrices can be serialized and can achieve similar area requirement and clock cycle performance as a serial-based implementation. By proving many new properties and equivalence classes for circul...

متن کامل

On the Construction of Lightweight Circulant Involutory MDS Matrices

In the present paper, we investigate the problem of constructing MDS matrices with as few bit XOR operations as possible. The key contribution of the present paper is constructing MDS matrices with entries in the set of m ×m non-singular matrices over F2 directly, and the linear transformations we used to construct MDS matrices are not assumed pairwise commutative. With this method, it is shown...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2012